Temperature Preference of *C. elegans*: Isothermal Movement

Mojdeh Tabibian, Evan Yang, Zia Kanani, Regine Goh, Karen Jiang, Emma Lidington, Anmol Randhawa, Sam Schneider, Neha Agarwal, and Katsushi Arisaka

Elegant Mind Club, UCLA Department of Physics and Astronomy

Background Information

- *C. elegans* are able to transform sensory input into motor output. Temperature affects *C. elegans* behavior, which can be observed through thermotaxis.
- *C. elegans* have memory for their cultivation temperature (T_c). When placed on a thermal gradient, if $T > T_c$ they travel to colder temperatures (negative thermotaxis). When $T < T_c$ they travel to warmer temperature (positive thermotaxis).

Hypothesis

Starved *C. elegans* placed on a thermostatically regulated gradient would accumulate around the cultivation temperature in search for food.

Methods and Material

- The two water baths set at 5°C and 35°C, was thermostatically regulated by thermostats within +/-0.1°C.
- An aluminum slab connected the two water baths, being tightly connected at each end to aluminum cubes immersed in a bath.
- The created gradient was formed 1°C/cm. There was a range of 19-25°C formed on the square petridish plate.
- The room temperature was controlled at 22°C and relative humidity at 20-30%.
- About 20-25 young adult *C. elegans* were starved for an hour at the temperature of cultivation, 22°C, and then placed on the temperature gradient.

Figure 1: Systematic illustration of the apparatus used for measuring the isothermal behavior of *C. elegans* on a linear gradient.

Figure 2: The apparatus used for measuring the isothermal behavior and preference of *C. elegans* for temperature on a linear gradient.

Figure 3: Image taken by Flir infrared camera indicating a temperature range of 5-35°C on the aluminum slab. Red color represents the warmer temperatures and blue represents the colder temperatures. The center of the aluminum slab is 22°C.

Figure 4: A dark field method was used for imaging. The field was illuminated by red light from the side LEDs. The image above shows the distribution of *C. elegans* on a temperature range of 19-25°C on a 9x9 cm petridish plate.

Pilot Results and Discussion

- The location and migration pattern of *C. elegans* were examined by looking at the digital images.
- The worms showed an isothermal behavior; once they reached their preferred temperature, they moved in such a manner as not to deviate from the temperature.
- There were distinguishable populations of *C. elegans* that migrated to different temperatures on the plate. They made angled turns and circular motions within the same range of temperature to assure that they remain within the same area.
- *C. elegans* tend to be distributed in a bell shaped curve +/- 3°C from temperature of cultivation. This signifies different preferences of *C. elegans* for different temperatures which could be due individual differences and genetic variations.

Figure 5: Position versus temperature. The X-axis represents the temperature in degree Celsius and the Y-axis represents the worm count. The worms were counted at different temperatures every 5 minutes for 40 minutes.

Figure 6: The isothermal tracking on a 9x9 cm plate. The tracks indicate that individual *C. elegans* remain within the temperature of preference, displaying an isothermal behavior. These tracks were made in the duration of 0-30 minutes.

Reference

Acknowledgement

We are thankful for UCLA department of physics and astronomy for guidance and support. This work is supported by NSF IDBR.